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Abstract

Future Frame Synthesis (FFS) aims to enable models to generate sequences of future frames
based on existing content. This survey comprehensively reviews historical and contemporary
works in FFS, including widely used datasets and algorithms. It scrutinizes the challenges
and the evolving landscape of FFS within computer vision, with a focus on the transition
from deterministic to generative synthesis methodologies. Our taxonomy highlights the
significant advancements and shifts in approach, underscoring the growing importance of
generative models in achieving realistic and diverse future frame predictions.

1 Introduction

The goal of the future frame synthesis (FFS) task is to generate future frames based on a sequence of historical
frames (Srivastava et al., 2015) or just a single context frame (Xue et al., 2016), with or without additional
control signals. The learning objective of this FFS is also considered to be key to building a world model (Ha
& Schmidhuber, 2018; Hafner et al., 2023b). FFS is closely related to low-level computer vision processing
techniques, particularly when synthesizing near frames (Liu et al., 2017; Wu et al., 2022b; Hu et al., 2023b).
However, FFS diverges from other low-level tasks by implicitly demanding a more complex understanding
of scene dynamics and temporal coherence, which is often characteristic of high-level vision tasks. The
challenge lies in designing models that can achieve this balance efficiently, using a moderate number of
parameters to minimize inference latency and resource consumption, thereby making FFS suitable for real-
world applications. This unique position of FFS demonstrates its integral role in bridging the gap between
low-level perception & prediction and high-level understanding & generation within computer vision.

Current FFS algorithms can generally be divided into two categories. One category entails referencing
pixels from the current frames (typically the last observed frame) to construct future frames. However, this
group of methods inherently confronts difficulties in modeling objects’ appearance and disappearance (birth
and death) within the scene. A shared feature of these methods is that they can make highly accurate
predictions in the short term, but their accuracy diminishes over longer periods. This kind of research
is also commonly referred to as video prediction (Oprea et al., 2020). The other category encompasses
methods that involve generating new frames from scratch. Although these approaches offer the promise of
capturing the birth-and-death phenomena in object dynamics, they predominantly focus on modeling pixel-
level distributions. As a result, they often lack an integrated understanding of the underlying real-world
context, which is crucial for creative synthesis capabilities.

Before our work, two reviews in 2020 on video prediction (Oprea et al., 2020; Rasouli, 2020a) cover a lot
of early technical content. Recently, there have also been literature reviews on "text-to-video generative
model" (Liu et al., 2024) and "long video generation" (Li et al., 2024; Sun et al., 2024b). Our survey mainly
highlights the latest advancements and the connections between predictive and generative methodologies.
We believe that the future of long-term FFS hinges on a synergistic integration of prediction and generation
techniques. This unified approach would combine contextual constraints with enhanced comprehension,
addressing challenges within a cohesive framework.

As background, we will introduce the problem, the dataset, and the fundamental challenges faced in Section 2.
Our taxonomy focuses on the stochasticity of methods. In Section 3, we introduce deterministic algorithms
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that aim to perform pixel-level fitting based on deterministic target frames. However, due to pixel-level
metrics encouraging models to average over multiple equally probable outcomes, they often produce blurred
outputs. In Section 4, we discuss algorithms that attempt to imbue models with the ability to make stochas-
tic predictions in motion. This includes methods that introduce stochastic variables or distributions into
deterministic models and approaches that directly utilize probabilistic models. Such algorithms allow mod-
els to sample from motion distributions, encouraging the generation of predictions that deviate significantly
from the target frame but remain reasonable. Given the limited creativity of existing FFS algorithms for
high-resolution natural video data, which struggle with creating future frame sequences containing many
birth-and-death phenomena, we introduce the generative FFS task in Section 5, which prioritizes generating
reasonable video frame sequences in extended temporal durations over pixel-level accuracy. In Section 6, we
explore the diverse applications of FFS across various domains, highlighting its significance in autonomous
driving, robot navigation, the cinema industry, meteorology, and anomaly detection. These applications
underscore the importance and potential of FFS as a tool for understanding and interacting with the world
around us. In Section 7, we provide an overview of previous surveys on video prediction and video diffusion
models. We also clarify the focus of our survey, which comprehensively reviews historical and contemporary
works in FFS, focusing on the transition from deterministic to generative synthesis methodologies. It empha-
sizes the growing importance of generative models in achieving realistic and diverse future frame predictions,
highlighting significant advancements and shifts in approach.

2 Future frame synthesis

2.1 Problem Definition

The nature of FFS task involves forecasting future frames or sequences in a video based on the analysis
of past frames. The primary goal is to develop models that can accurately anticipate the visual content
and probable motion of subsequent frames in a video sequence. This can be formulated as a conditional
generative modeling problem, where given a sequence of observed frames Xt1:t2 , the goal is to synthesize the
future frames Yt2+1:t3 .

Yt2+1:t3 = Xt1:t2 · P (Yt2+1:t3 |Xt1:t2). (1)

In Eq. (1), t1 represents the initial time step, t2 is the final time step for observed frames, and t3 denotes
the last time step for synthesizing future frames. The challenge lies in learning a mapping function that
captures the complex spatiotemporal dependencies within the video sequence.

Many FFS algorithms also make use of additional information, which can be auxiliary data At1:t2 from videos,
such as depth maps, landmarks, bounding boxes, and segmentation maps, to help the model understand the
video. It can also include human input control signals Ct2+1:t3 , such as text instructions and strokes, with
the goal of enabling the model to generate future video frame sequences based on specific future trajectories.
Based on this consideration, we can extend the formula of the FFS task to a more comprehensive version as
Eq. (2):

Yt2+1:t3 = Xt1:t2 · P (Yt2+1:t3 |Xt1:t2 , At1:t2 , Ct2+1:t3 ). (2)

2.2 Datasets

The advancement in video synthesis models is greatly dependent on the diversity, quality, and characteristics
of training datasets. A general observation is the varying suitability of datasets based on their dimension-
ality and size, where lower-dimensional datasets, typically with smaller data sizes, may suffer from limited
generalizability. In contrast, higher-dimensional datasets provide a broader range of data, contributing to
stronger generalization capabilities in the models. We offer an overview of the most widely used datasets in
video synthesis in Table 1, highlighting their amounts of data and additional supervisory modalities, thereby
providing a comprehensive picture of the current dataset landscape in this field. In cases where specific
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Dataset Category # Videos # Clip Frames Resolution Extra Annotations
KTH Action (Schuldt et al., 2004) Human 2, 391 95∗ 160 × 120 Class
Caltech Pedestrian (Dollar et al., 2011) Human 137 1, 824 640 × 480 Bounding Box
HMDB51 (Kuehne et al., 2011) Human 6, 766 93∗ 414 × 404† Class
UCF101 (Soomro et al., 2012) Human 13, 320 187∗ 320 × 240 Class
J-HMDB (Jhuang et al., 2013) Human 928 34∗ 320 × 240 OF, Ins, HJ, Class
KITTI (Geiger et al., 2013) Traffic 151 323∗ 1242 × 375 OF, BBox, Sem, Ins, Depth
Penn Action (Zhang et al., 2013) Human 2, 326 70∗ 480 × 270† Human Joint, Class
SJTU 4K (Song et al., 2013) General 15 300 3840 × 2160 -
Sports-1M (Karpathy et al., 2014) Human 1, 133, 158 variable variable Class
Moving MNIST (Srivastava et al., 2015) Simulation 10, 000 20 64 × 64 -
Cityscapes (Cordts et al., 2016) Traffic 46 869∗ 2048 × 1024 Semantic, Instance, Depth
YouTube-8M (Abu-El-Haija et al., 2016) General 8, 200, 000 variable variable Class
Robotic Pushing (Finn et al., 2016) Robot 59, 000 25∗ 640 × 512 Class
DAVIS17 (Pont-Tuset et al., 2017) General 150 73∗ 3840 × 2026† Semantic
Something-Something (Goyal et al., 2017) Object 220, 847 45 427 × 240† Text
ShapeStacks (Groth et al., 2018) Simulation 36, 000 16 224 × 224 Semantic
SM-MNIST (Denton & Fergus, 2018) Simulation customize customize 64 × 64 -
D2-City (Che et al., 2019) Traffic 11, 211 750∗ 1080p / 720p BBox
Kinetics-700 (Carreira et al., 2019) Human 650, 000 250∗ variable Class
RoboNet (Dasari et al., 2019) Robot 161, 000 93∗ 64 × 48 -
Vimeo-90K (Xue et al., 2019) General 91, 701 7 448 × 256 -
BDD100K (Yu et al., 2020) Traffic 100, 000 1175∗ 1280 × 720 BBox, Semantic, Depth
nuScenes (Caesar et al., 2020) Traffic 1, 000 40∗ 1600 × 900 BBox, Semantic
WebVid (Bain et al., 2021) General 10, 732, 607 449∗ 596 × 336 Text
X4K1000FPS (Sim et al., 2021) General 4, 408 65∗ 4096 × 2160 -
SportsSlomo (Chen & Jiang, 2024) Human 130,000 7 1280 × 720 -
InternVideo2 (Wang et al., 2024b) General 2, 000, 000 variable variable Text, Action
OpenDV-YouTube (Yang et al., 2024) Traffic 2, 139 100,000+∗ variable Text

∗ denotes the mean value. † denotes the median value.

Table 1: Summary of the most used video prediction datasets, including the total number of videos, frame
count for each video clip, image resolution, and additional annotations, etc. (OF: Optical Flow, BBox:
Bounding Box, Sem: Semantic, Ins: Instance, HJ: Human Joints)

dataset details are not reported either in the original paper or the project page, we calculate the mean or
median statistics to maintain consistency in our analysis.

Challenges. 1. Unify the organization of image and video data. A substantial amount of computer
vision work is conducted on the image modality. Therefore, image datasets may undergo more meticulous
curation and possess more annotated data. The most commonly used billions-level image datasets include
YFCC100M (Thomee et al., 2016), WIT400M (Radford et al., 2021) and LAION400M (Schuhmann et al.,
2021). Given the vast amount of data involved, researchers may need to effectively leverage knowledge
from foundational image models. When incorporating video data into training, we may need to filter out
low-quality segments and select an appropriate sampling frame rate.

2. Determine the proportion of data from different domains. Computer graphics composite data, 2D anime
data, real videos, and videos with special effects can have vastly different appearances. Moreover, we may
not be able to unify data from different sources into a specific resolution because videos may have different
aspect ratios, and details that only make sense at high resolutions (such as subtitles, and textures). Many
frame synthesis methods are sensitive to resolution because of the correlation between resolution and object
motion intensity (Sim et al., 2021; Hu et al., 2023b; Yoon et al., 2024).

2.3 Overall Challenges

There exist longstanding challenges in FFS field, including the need for algorithms that balance low-level
pixel processing with high-level scene dynamics understanding, the inadequacy of perceptual and stochastic
evaluation metrics, the difficulty in achieving long-term synthesis, and limited high-resolution dataset quality
for stochastic motion and birth-and-death phenomena. This section provides an overview of challenges.

3



Under review as submission to TMLR

Evaluation metrics. The low-level metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM), can only assess the pixel-wise accuracy of predicted pixels. To chase these metrics,
researchers typically train models utilizing either the l1 or l2 loss function of pixel space. The models
are prone to average over multiple plausible outcomes, often resulting in blurry predictions, known as the
perception-distortion tradeoff (Blau & Michaeli, 2018). They tend to favor blurry predictions that nearly
accommodate the ground truth over sharper and more plausible but imperfect generations that do not match
the ground truth. Many researchers are increasingly looking towards alternatives, such as perceptual metrics
(DeePSiM (Dosovitskiy & Brox, 2016), LPIPS (Zhang et al., 2018)), and stochastic metrics (IS (Salimans
et al., 2016), FID (Heusel et al., 2017)). These metrics may better align with human perception. But even
classifiers trained on human perception annotations have a relatively low level of agreement with humans in
judging image quality (Kumar et al., 2022).

Visual researchers typically evaluate models based on the visual quality of the generated results. However, for
many specific applications, we are not sure that visual quality is crucial. For instance, Dreamer-V3 (Hafner
et al., 2023a) and VPT (Baker et al., 2022) have successfully built visual models on low-resolution frame
sequences. Moreover, most research work on visual representations is built on relatively small image reso-
lutions (Radford et al., 2021; He et al., 2022). We are concerned that an excessive pursuit of visual quality
may lead us to favor models that focus on low-level features. In addition to matching human subjective
perception, we also need to design metrics that evaluate a model’s ability to capture scene dynamics and
temporal variations.

Even with better evaluation metrics, optimizing for them is a challenge. During model training, researchers
often use Imagenet classifiers as feature extractors (Johnson et al., 2016; Kumar et al., 2022) in comparing
the generated results with the ground truth to optimize for both low-level and high-level features. There
are also some GAN-based loss functions that can improve the image quality of the generated results (Huang
et al., 2017; Zhang et al., 2020).

Long-term synthesis. While short-term video prediction has seen significant advancements, accurately
synthesizing events over extended time horizons remains challenging because of long-term dependencies and
complex interactions between objects in dynamic scenes. Iteratively using a short-term video prediction
model will quickly lead to degraded results (Wu et al., 2022b; Hu et al., 2023b). Due to the inadequacy
of model scale in forming a comprehensive understanding of the real world, most existing video synthesis
models primarily model changes in pixel distribution. When faced with natural videos spanning extended
periods, these models struggle to accurately predict object movements while maintaining visual quality. A
promising approach for enhancing long-term synthesis capabilities is the incorporation of high-level structure
information (Villegas et al., 2017). Understanding and utilizing higher-order information can enable the
model to retain more key details, thereby achieving internal consistency within the video over longer time
scales.

Generalization. The interplay between data volume and the complexity of models jointly determines the
upper bounds of an algorithm’s performance. Despite the vastness of video data available on the internet,
the scarcity of high-quality video datasets suitable for video synthesis remains a limiting factor, and existing
datasets also pose various challenges, such as simplistic data distribution, low resolution, and small motion
scales. These issues make it difficult for video synthesis models to handle high-resolution content and
large motion scales, thus restricting their practical utility to diverse and unseen scenarios. Achieving high-
resolution video synthesis is a complex task demanding significant computational resources (Blattmann et al.,
2023b). The intricacies involved make real-time applications challenging due to the substantial computational
burden.

3 Deterministic synthesis

3.1 Raw Pixel Space

In short-term FFS, methods in raw pixel space have achieved good results. We hope to review existing
methods and discuss the challenges faced.
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3.1.1 Recurrent networks.

The exploration of recurrent neural networks in video synthesis is pioneered by PredNet (Lotter et al.,
2016), which draws inspiration from predictive coding in neuroscience and employs a recurrent convolutional
network for the effective processing of video features. Building on this, PredRNN (Wang et al., 2017)
introduces significant enhancements by modifying Long Short-term Memory (LSTM) with a dual memory
structure, aiming for enhanced spatiotemporal modeling. Despite its advancements, it encounters challenges
with gradient vanishing in video synthesis tasks. Addressing such limitations, ConvLSTM (Shi et al., 2015)
emerges as a pivotal model, ingeniously integrating LSTM with Convolutional Neural Network (CNN) to
proficiently capture motion and spatiotemporal dynamics, a development that has significantly influenced
subsequent video synthesis models. Further advancing the field, E3d-LSTM (Wang et al., 2018b) innovatively
incorporates 3D convolutions into RNNs and introduces a gate-controlled self-attention module, thereby
markedly improving long-term synthesis capabilities. Nonetheless, the increased computational complexity
due to 3D convolutions might offset the performance gains in certain applications. MSPred (Villar-Corrales
et al., 2022) proposes a hierarchical convolutional and recurrent network operating at multiple temporal
frequencies to predict future video frames, as well as other representations such as poses or semantics.

Challenges. Recurrent networks, despite their effectiveness in capturing temporal dependencies, face sev-
eral challenges in video prediction tasks. Their sequential nature, which allows them to model frame-by-frame
changes, can lead to high computational complexity, especially in high-resolution scenarios. This is evident
from the significantly higher FLOPs and lower FPS observed in recurrent-based models compared to their
recurrent-free counterparts (Tan et al., 2023). Additionally, recurrent networks are prone to gradient vanish-
ing and exploding issues, which can hinder their ability to learn long-term dependencies (Gao et al., 2022).
These challenges underscore the need for alternative approaches that can balance efficiency and performance,
such as recurrent-free models, which have shown promising results in various video prediction tasks.

3.1.2 Convolutional networks.

CNNs have been instrumental in the evolution of video synthesis technology. Beginning with GDL (Math-
ieu et al., 2015), the field has seen significant advancements. Following this, PredCNN (Xu et al., 2018)
establishes a new benchmark by outperforming its predecessor PredRNN (Wang et al., 2017) across various
datasets. SDC-Net (Reda et al., 2018) introduces a novel approach by utilizing a high-resolution video frame
synthesis technique that effectively leverages past frames and optical flow. Building on these innovations, the
introduction of SimVP (Gao et al., 2022) marks another milestone. This approach revisits the advancements
made by ViT (Dosovitskiy et al., 2021) and introduces a simplified CNN network, demonstrating that such
a configuration can achieve comparable performance in video synthesis.

Challenges. The CNN-based frame synthesis method, although simple to implement and fast, is not
suitable for spatially shifting the pixels of the input frames. CAIN (Choi et al., 2020) and FLAVR (Kalluri
et al., 2023) introduced channel attention and 3D-UNet in the synthesis of intermediate frames, respectively,
but they do not completely replace explicit pixel motion methods such as kernel-based methods and flow-
based methods. Moreover, in pursuit of efficiency, most CNN networks used for FFS have a relatively
small number of parameters, generally not exceeding 60M (Tan et al., 2023). As a comparison, in order to
leverage large datasets, the video diffusion model has been scaled up to over 1.5B parameters (Blattmann
et al., 2023a). Scaling up CNN-based models effectively presents a significant challenge. We speculate that
short-term prediction models for high-resolution real-time applications and models that attempt to draw
knowledge and generation capabilities from large datasets will diverge.

3.1.3 Optical-flow-based synthesis.

The optical flow describes the motion of pixels between frames and can be used in flowing pixels of the
current frame to synthesize near future frames (Liu et al., 2017). We consider the flow-based methods
extensions of the kernel-based methods (Niklaus et al., 2017), as the kernel-based methods typically con-
strain the movement of pixels to a relatively small neighborhood (Cheng & Chen, 2021). Focusing on the
enhancement of synthesis quality, FVS (Wu et al., 2020) utilizes a comprehensive approach by incorporat-
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ing supplementary information such as semantic maps, instance maps, and optical flow from input frame
sequences. This method, while effective, introduces challenges due to increased data modalities and compu-
tational demands. OPT (Wu et al., 2022b) estimates the optical flow of video motions in an optimization
manner. By continuously refining the current optical flow estimation, the image quality of the next frame
can be significantly improved. This approach effectively leverages the knowledge from off-the-shelf optical
flow models (Teed & Deng, 2020) and frame interpolation models (Jiang et al., 2018; Huang et al., 2022b).
Although training is omitted, the iterative optimization process during each inference requires substantial
computation. DMVFN (Hu et al., 2023b) enhances the dense voxel flow (Liu et al., 2017) estimation by
dynamically changing network architecture based on motion magnitude. DMVFN confirms the importance
of a coarse-to-fine, multi-scale approach in solving short-term flows.

Challenges. The study of optical flow estimation is a hot topic in itself (Teed & Deng, 2020; Huang et al.,
2022a; Sun et al., 2022; Dong & Fu, 2024). However, mainstream optical flow models trained on synthetic
data with strong augmentations may differ significantly from the scenarios focused on by FFS. Moreover, the
learning objective of these models is not to provide a flow that is suitable for moving pixels and synthesizing
high-quality images. Xue et al. (2019) point out that for different downstream tasks, we need to fine-tune
or even train a flow estimation network from scratch. Higher-performance optical flow networks may even
lead to worse image synthesis effects because they may focus on ambiguous areas such as occlusions and
have insufficient resolution (Niklaus & Liu, 2020; Huang et al., 2022b). In real-world scenarios, it is also
challenging to obtain optical flow labels directly.

We believe that the near future frames can be synthesized increasingly better under the constantly improving
optical flow method. And it is still a challenge to integrate optical flow methods into the goal of long-term
video generation (Liang et al., 2023). Optical flow may only be used to predict pixel movement over a very
short period of time and cannot help generate new video content.

3.1.4 Transformers.

After ViT’s groundbreaking design of a pure transformer applied directly to sequences of image patches Doso-
vitskiy et al. (2021), the application of transformers to frame synthesis has become a hot topic. Video frame
interpolation is a task very closely related to FFS (Liu et al., 2017). Both Shi et al. (2022) and Lu et al. (2022)
propose transformer-based video interpolation frameworks to overcome the limitations of traditional CNNs,
leveraging self-attention mechanisms to capture long-range dependencies and enhance content-awareness.
They introduce innovative strategies, such as local attention in the spatial-temporal domain and cross-scale
window-based attention, to improve performance and handle large motions effectively. Ye & Bilodeau (2023)
present an efficient transformer model for video prediction, leveraging a novel local spatial-temporal separa-
tion attention mechanism, and compares three variants (fully auto-regressive, partially auto-regressive, and
non-autoregressive) to achieve optimal performance and reduced complexity. There are still many ongoing
studies aimed at advancing the use of transformers to address inter-frame dynamics with varying motion
amplitudes and high-resolution synthesis issues (Park et al., 2023; Zhang et al., 2024).

Challenges. Many researchers believe that transformers have an advantage on large datasets (Zhai et al.,
2022; Smith et al., 2023). However, most of these studies focus on high-level vision tasks. Moreover, the
success of transformers on many tasks relies on fully leveraging the capabilities of foundational models. In
image synthesis tasks, we are not yet certain about the best practices (Li et al., 2021). Leveraging the
experience of large language models (LLMs) and similar architectures could be a promising direction, which
we will discuss in subsequent Section 5.2.

3.2 Feature Space

Synthesizing in raw pixel space often overburdens models by requiring them to reconstruct images from
scratch, a task particularly challenging for high-resolution video datasets. This realization has led to a shift
in focus among researchers. Rather than grappling with the complexities of pixel-level synthesis, several
studies have pivoted towards high-level feature synthesis in feature space, such as segmentation and depth
maps. These approaches offer a more efficient way of handling the intricacies of videos (Oprea et al., 2020).
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Future semantic segmentation. Future semantic segmentation represents a progressive approach of
video synthesis, primarily focusing on synthesizing semantic maps for forthcoming video frames. This
methodology diverges from traditional raw pixel forecasting, turning to semantic maps to narrow the syn-
thesis scope and enrich scene comprehension. In this context, the S2S model (Luc et al., 2017) stands as a
groundbreaking end-to-end system. It processes RGB frames alongside their semantic maps, both as input
and output. This integration not only advances future semantic segmentation but also elevates the task of
video frame prediction, showcasing the distinct advantage of semantic-level forecasting. Building on this
foundation, SADM (Bei et al., 2021) further innovates by amalgamating optical flow with semantic maps.
This fusion leverages optical flow for motion tracking and semantic maps for appearance detailing, employing
the former to warp input images and the latter to inpaint occluded areas.

Future depth prediction. Depth maps, as a 2D data structure containing 3D information, can provide
the model with an enhanced perception of the 3D world at minimal cost. Leveraging predictions of future
depth maps can assist in FFS tasks. MAL (Liu et al., 2023) introduces a meta-learning framework with a two-
branch architecture containing future depth prediction and an auxiliary task of image reconstruction. The
proposed meta-learning framework improves the quality of synthesized future frames, especially in complex
dynamic scenes.

Challenges. Future prediction in feature space, presents significant challenges due to the complex inter-
play of temporal dynamics and spatial context. Models must capture intricate motion patterns and predict
accurate depths or semantic regions, requiring a deep understanding of 3D scene structures and object
interactions. Ensuring temporal consistency and precise spatial accuracy while handling occlusions, perspec-
tive changes, and complex backgrounds is crucial. High-resolution feature maps and large-scale annotated
datasets further increase computational demands and data requirements. Generalizing to unseen scenes and
objects remains a formidable challenge, necessitating robust models that can adapt to diverse visual ap-
pearances and contexts. These challenges underscore the need for innovative approaches like meta-auxiliary
learning to enhance future prediction capabilities.

4 Stochastic Synthesis

In the early stages, video synthesis is primarily perceived as a low-level computer vision task, with a focus
on employing deterministic algorithms to enhance pixel-level metrics such as MSE, PSNR, and SSIM. This
approach, however, inherently limits the potential for creative output from these models by confining possible
motion outcomes to a single, fixed result (Oprea et al., 2020). This often results in high pixel-level scores
but at the cost of producing blurry images, which significantly diminishes the practical applicability of
these algorithms. Recognizing this issue, there has been a paradigm shift in the field of video synthesis,
moving away from the reliance on short-term deterministic prediction towards embracing long-term stochastic
generation. This transition acknowledges that while stochastic synthesis may yield results that diverge
significantly from the ground truth, it plays a crucial role in fostering a more comprehensive understanding
and enhancing creativity concerning the evolution of video content.

4.1 Stochasticity Modelling

Modeling the uncertain object motion can be achieved by introducing stochastic distributions into determin-
istic models, or directly leveraging probabilistic models.

Stochastic distributions. In the early stage, VPN (Kalchbrenner et al., 2017) uses CNNs for multiple
predictions in videos based on pixel distributions and SV2P (Babaeizadeh et al., 2017) enhances an action-
conditioned model (Finn et al., 2016) with stochastic distribution estimation for videos. Shifting the focus
to a more holistic view of video elements, PFP model (Hu et al., 2020) presents a probabilistic method for
synthesizing semantic segmentation, depth map, and optical flow in videos simultaneously. Additionally,
SRVP (Franceschi et al., 2020) utilizes Ordinary Differential Equations (ODEs), while PhyDNet (Guen
& Thome, 2020) employs Partial Differential Equations (PDEs) to calculate stochastic distributions. A
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potential drawback is that their assumption that physical laws can be linearly disentangled from other
factors of variation in the latent space, may not hold true for all types of videos.

Probabilistic models. With the pioneering work of GDL (Mathieu et al., 2015) establishing the foun-
dation, adversarial training has significantly advanced FFS tasks in predicting uncertain object motions.
Similarly, vRNN (Castrejon et al., 2019) and GHVAE (Wu et al., 2021) enhance VAEs through likelihood
networks and hierarchical structures respectively, thereby offering another dimension to the ongoing evolution
of stochastic synthesis methodologies.

Recognizing that object motion is largely deterministic barring unforeseen events like collisions, SVG (Denton
& Fergus, 2018) models trajectory uncertainty using fixed and learnable priors, which effectively blends
deterministic and probabilistic approaches. In a similar vein, but with a focus on enhancing temporal aspects,
Retrospective Cycle GAN (Kwon & Park, 2019) introduces a sequence discriminator designed to detect fake
frames. This idea of scrutinizing frame authenticity is further extended in DIGAN (Yu et al., 2022), where
the emphasis shifts to a motion discriminator that concentrates on identifying unnatural motions.

To overcome pixel-level synthesis challenges in stochastic models, several works introduce intermediate rep-
resentations. S2S (Luc et al., 2017) and Vid2Vid (Wang et al., 2018a) integrate adversarial training with
future semantic segmentation. Additionally, TPK model (Walker et al., 2017) leverages a VAE to extract
human pose information, and then a GAN for predicting future poses and frames.

It is worth noting that directly modeling stochastic distributions is prone to covering a broader predictive
distribution but suffers from poor visual effects. In contrast, probabilistic models are capable of producing
sharper results, yet they grapple with issues such as mode collapsing, training difficulties, and substantial
computational overhead. Bridging these two methodologies, SAVP (Lee et al., 2018) combines stochastic
distributions with adversarial training aiming to achieve broader predictive distributions with promising
visual quality.

Challenges. Despite the ability of stochastic models to capture a broad spectrum of plausible futures,
they often grapple with visual quality issues and heightened computational demands. Directly modeling
stochastic distributions can result in blurred outputs, while probabilistic models may face challenges such
as mode collapse and training instability. The quest for a harmonious balance between diverse, high-quality
predictions and computational efficiency remains a formidable challenge. Moreover, the assumption that
physical laws can be linearly disentangled from other variation factors may not universally apply to all video
types, hinting at the need for more adaptable and generalizable models in the future.

4.2 Disentangling Components

Stochastic synthesis algorithms primarily focus on the randomness in motion. This approach, however,
often neglects the birth-and-death phenomena of objects in videos. Consequently, numerous studies isolate
motion from other video elements or artificially manipulate its evolution, providing a clearer understanding
of motion dynamics while simplifying the complexity of real-world scenarios.

Content and motion. Video synthesis algorithms confront the challenging complexity of natural video
sequences by emphasizing intricate image details. To this end, they focus on effectively modeling appearances
through detailed local information, while simultaneously developing a comprehensive understanding of the
dynamic global content inherent in videos. However, in applications such as robot navigation and autonomous
driving, the importance of understanding object motion patterns supersedes the pursuit of visual aesthetics.
This priority shift has encouraged the development of algorithms that emphasize predicting the movement of
objects and distinguishing motion from appearance in videos. Early work CDNA (Finn et al., 2016) has set
a precedent by explicitly predicting the motion of objects. It maintains invariant appearance characteristics,
which is instrumental in applying the model to objects beyond those encountered during training.

MoCoGAN (Tulyakov et al., 2018) automatically learns to disentangle motion from content in an unsuper-
vised manner, while the approach of leveraging separate content and motion encoder pathways has also been
widely used in various video prediction models. This idea of separating content and motion is further explored
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in LMC (Lee et al., 2021), which makes the motion encoder focused on motion prediction based on residual
frames, while the content encoder extracts content features from the input frame sequence. MMVP (Zhong
et al., 2023) takes a different approach by employing only one image encoder to extract information, and
then a two-stream network before the image decoder to separately handle motion prediction and appearance
maintenance.

Addressing the stochastic nature of motion, AMC-GAN (Jang et al., 2018) models multiple plausible out-
comes via adversarial training. Transitioning to a different approach, SLAMP (Akan et al., 2021) adopts
a non-adversarial approach but focuses on learning stochastic variables for separate content and motion.
Further advancing this field, LEO (Wang et al., 2023e) and D-VDM (Shen et al., 2023) leverage diffusion
models for more realistic disentanglement of content and motion, showcasing the latest advancements in this
direction.

Foreground and background. In the process of predicting future frames, the motion dynamics of the
foreground (objects) and background (scene) typically exhibit significant differences. Foreground objects
typically exhibit more intense movement, whereas scenes tend to remain relatively static. This distinction
has steered research towards predicting the motions of these elements separately, offering a more nuanced
understanding of video dynamics. A pivotal contribution in this area is DrNet (Denton et al., 2017), which
specifically addresses scenarios where the background remains largely unchanged across video frames. This
model ingeniously decomposes images into the content and pose of objects, then harnesses adversarial training
techniques to develop a scene discriminator that evaluates whether two pose vectors belong to the same
video sequence. Similarly, OCVP-VP (Villar-Corrales et al., 2023) utilizes a slot-wise scene parsing network
SAVi (Kipf et al., 2021) to achieve segmentation from the scene to the object level. Focusing on such videos,
prediction models can streamline the prediction process by eliminating the need to learn complex scene
dynamics. Human-centric tasks, such as predicting human movement and interaction with the environment,
and object-centric tasks, such as tracking object motion and positioning, both benefit from this approach.

Human-centric. FFS often centers around foreground motion, particularly when it involves intricate
human movements. In such scenarios, a common assumption across various specialized datasets is the
relatively static nature of the background, which is a typical characteristic in datasets focusing on detailed
human motion. This has led to a significant focus in research on understanding and forecasting human
poses to enhance the prediction of foreground motion. An example of this approach is seen in the work of
DVGPC (Cai et al., 2018), which innovatively predicts skeleton motion sequences before transforming these
sequences into pixel space using a skeleton-to-image transformer. Their method is an effective solution for
linking the abstract representation of motion with the practical aspect of video prediction, demonstrating a
nuanced understanding of the complexities involved in human-centric FFS tasks.

Object-centric. The field of object-centric video prediction is first introduced in the work of CVP (Ye
et al., 2019), which lays the foundation for this specialized area of video prediction. SlotFormer (Wu et al.,
2022c) introduces transformer-based auto-regressive models to learn representations of each object in video
sequences. This innovation ensures consistent and accurate tracking of each object over time. The OKID
model (Comas et al., 2023) represents a recent advancement. It uniquely decomposes videos into distinct
elements, specifically the attributes and trajectory dynamics of moving objects, employing a Koopman op-
erator. This approach highlights a more detailed method of analyzing object motion within video sequences,
differentiating it from previous methodologies.

General. Methods that concentrate on human poses or objects have demonstrated considerable promise
in specific video datasets, yet they encounter limitations due to their reliance on pre-defined structures and
struggle with adapting to variable backgrounds, which hampers their ability to generalize. This challenge
is evident in their performance, which, while effective under certain conditions, falters when faced with
dynamic background shifts, revealing a lack of the versatility required for wider applications. Bridging
this gap, MOSO (Sun et al., 2023) emerges as a notable approach, identifying motion, scene, and object
as the pivotal elements of a video. It delves deeper into content analysis by distinguishing between scene
and object. Scene and object are considered as a further breakdown of content, where scene represents
the background and object represents the foreground. MOSO’s innovative contribution lies in its two-stage

9



Under review as submission to TMLR

network tailored for general video analysis. Initially, the MOSO-VQVAE model dissects video frames into
token-level representations, honing its capabilities through a video reconstruction task. Subsequently, the
model employs transformers in its second stage, tackling disparities in masked tokens. This strategic design
equips the model to handle a variety of tasks at the token level, including video prediction, interpolation,
and unconditional video generation.

Challenges. Disentangling content from motion or foreground from background in videos is complex due to
the intricate interplay between temporal dynamics and spatial context. Models must accurately capture and
predict motion patterns, depths, and semantic regions while maintaining temporal consistency and spatial
accuracy. Handling occlusions, perspective changes, and complex backgrounds adds to the difficulty. High-
resolution feature maps and large-scale annotated datasets exacerbate computational demands. Generalizing
to unseen scenes and objects remains challenging, necessitating robust models that can adapt to diverse visual
appearances and contexts. Applying the concept of separate processing to the generative methods we will
discuss later (in Section 5) is also a challenge.

4.3 Motion-Controllable Synthesis

In the field of FFS, one specialized research direction has emerged that focuses on the explicit control of
motion. This approach is distinct in its emphasis on forecasting future object positions based on user-defined
instructions, diverging from the conventional reliance on past motion trends. The central challenge in this
domain lies in the synthesis of videos that adhere to these direct instructions while maintaining a natural
and coherent flow, a task that demands a nuanced understanding of both user intent and the dynamics of
motion within a video context. This challenge highlights the intricate balance between user control and
automated imagination, marking a significant shift in how FFS models are conceptualized and implemented.

Strokes. There is no historical motion information to be used for video generation from one still image,
hence several methods have emerged allowing for interactive user control. iPOKE (Blattmann et al., 2021)
introduces techniques where local interactive strokes and pokes enable users to deform objects in one still
image to generate a sequence of video frames. These strokes indicate the user’s intended motion for the
objects. Following this innovative pathway, Controllable-Cinemagraphs model (Mahapatra & Kulkarni,
2022) introduces a method to interactively control the animation of fluid elements. The advancements in
the field underscore the growing importance of user-centric approaches in the realm of motion-controllable
FFS.

Instructions. The integration of instructions of various modalities, including local strokes, sketches,
and texts, is increasingly common in works aiming to capture user-specified motion trends. VideoCom-
poser (Wang et al., 2023a) synthesizes videos by combining text descriptions, hand-drawn strokes, and
sketches. This approach respects textual, spatial, and temporal constraints, leveraging video latent diffusion
models and motion vectors for explicit dynamic guidance. Essentially, It can generate videos that align with
user-defined motion strokes and shape sketches. In a similar vein, DragNUWA (Yin et al., 2023) primarily
leverages text for video content description and strokes for future motion control, enabling the generation of
customizable videos. These attempts advance the field of video generation by broadening the range of user
input modalities.

Challenges. Achieving natural and coherent video synthesis under explicit user control is challenging.
Models must interpret user intent accurately and generate videos that adhere to specified motion instructions
while maintaining temporal and spatial coherence. Balancing user control with the model’s autonomous
imagination is crucial. Ensuring that the generated videos are both visually appealing and contextually
appropriate adds to the complexity, requiring a deep understanding of both user input and video dynamics.

5 Generative Synthesis

In video analysis, the focus shifts towards algorithms designed for generative video synthesis, especially when
dealing with videos that exhibit stochastic birth-and-death events. These events introduce unpredictability
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as objects come into existence and vanish. These algorithms necessitate a profound understanding of the
underlying physical principles governing the real world to tackle such complexities. Instead of relying on
simplistic linear motion predictions extrapolated from historical frames, they embrace the challenge with
sophisticated and imaginative modeling techniques. As a result, tasks like transforming a single static image
into a dynamic video, often referred to as the image animation problem, emerge as promising candidates for
applying generative video prediction techniques.

5.1 Diffusion-Based Generation

Diffusion models (Ho et al., 2020) have emerged as the dominant approach in image generation. The Latent
Diffusion Model (LDM) (Rombach et al., 2022) extends this capability into the latent space of images,
significantly enhancing computational efficiency and reducing costs. This innovation has paved the way for
the introduction of diffusion models into the realm of video generation.

Latent diffusion model extensions. Extensions of LDM have demonstrated robust generative capabil-
ities in video generation (Voleti et al., 2022). For instance, Video LDM (Blattmann et al., 2023b) leverages
pre-trained image models to generate videos, offering multi-modal, high-resolution, and long-term video gen-
eration capabilities. Similarly, SEINE (Chen et al., 2024a) introduces a versatile video diffusion model that
creates transition sequences, enabling the generation of longer videos from shorter clips.

Text-guided video completion with additional information. Recent research efforts have focused on
harnessing additional information along with RGB images to fulfill the text-guided video completion task.
LFDM (Ni et al., 2023) extends latent diffusion models to synthesize optical flow sequences in latent space
based on textual guidance. Seer (Gu et al., 2023) inflates Stable Diffusion (Rombach et al., 2022) along
the temporal axis, allowing the model to use natural language instructions and reference frames to imagine
multiple variations of future outcomes. Emu Video (Girdhar et al., 2023) generates an image conditioned
on textual guidance and then extrapolates it into a video, making it flexible for creating videos based
on different textual inputs. DynamiCrafter (Xing et al., 2023a) broadens the application of text-guided
image animation to open-domain images. SparseCtrl (Guo et al., 2023) enables sketch-to-video generation,
depth-to-video generation, and video prediction with an expanded input range. There are also methods,
such as PEEKABOO (Jain et al., 2024), that attempt to achieve interactive synthesis, aiming to open up
unprecedented applications and creativity.

Preserving text guidance. Some works aim to provide a more precise understanding of text guidance and
preserve this information along the time dimension. MicroCinema (Wang et al., 2023d) adopts a divide-and-
conquer strategy to address appearance and temporal coherence challenges. It uses a two-stage generation
pipeline, initially creating the initial image using any existing text-to-image generator and then introducing
a dedicated text-guided video generation framework for motion modeling. LivePhoto (Chen et al., 2023)
introduces a framework that incorporates motion intensity as a supplementary factor to enhance control
over desired motions. It also proposes a text re-weighting mechanism to emphasize motion descriptions,
demonstrating impressive performance in text-guided video synthesis tasks. I2VGen-XL (Zhang et al., 2023)
utilizes static images for semantic and qualitative guidance, showcasing diverse approaches in text-guided
video synthesis research.

Integrating autoregressive models. Despite diffusion models becoming the most popular generative
models, some researchers attempt to preserve the architecture of autoregressive models to simultaneously
utilize the advantages of both mechanisms (Weng et al., 2023). Early generative video synthesis algorithms
faced limitations in data availability and model scalability, but they laid the groundwork for integrating
LLMs and diffusion models in video generation. Recently, GAIA-1 (Hu et al., 2023a) and Sora (Brooks
et al., 2024) leverage the strengths of both diffusion models and LLMs to achieve more creative, general, and
scalable video synthesis.

These advancements in video generation highlight the potential of diffusion models to create high-quality,
controllable, and diverse video content, pushing the boundaries of what is possible in the field of computer
vision and artificial intelligence.
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Challenges. Diffusion models have made significant strides in video generation, yet several critical chal-
lenges persist. Maintaining temporal coherence and consistency across frames is essential for realism but
remains difficult (Chen et al., 2024b; Xu et al., 2024). The computational efficiency and scalability of these
models are hindered by their resource-intensive nature, limiting their widespread adoption (Peebles & Xie,
2023). Controllability and interpretability issues arise as textual guidance may not always align with visual
outcomes, and model behaviors can be opaque. Data availability and diversity are crucial for training robust
models, but obtaining comprehensive datasets is challenging.

5.2 Token-Based Generation

In the realm of image/video generation, diffusion-based methods have garnered significant attention. How-
ever, these algorithms typically possess smaller model sizes compared to contemporary large-scale language
models (LLMs). Recent research has also placed significant emphasis on exploring how LLMs can accomplish
these tasks, leveraging extensive related research and optimization methods from LLMs to validate scaling
laws in the visual domain.

Key components. Implementing transformers FFS involves two crucial elements: an efficiently scalable
LLM framework and a proficient image/video tokenizer. Innovations such as VQ-VAE (Van Den Oord et al.,
2017) and VQGAN (Esser et al., 2021) have combined auto-regressive models with adversarial training
strategies to address image quantization and tokenization. An effective visual tokenizer should minimize
tokens per image or video clip segment while ensuring near-lossless visual reconstruction. However, the
high token requirements for lossless reconstruction, especially for high-resolution images, pose challenges for
processing long video sequences during training, limiting video generation capabilities.

Early transformer applications. Before the advent of LLMs (Brown, 2020; Achiam et al., 2023), trans-
formers have already made a significant impact on time-series modeling. Video Transformer (Weissenborn
et al., 2019) pioneers the application of transformer architectures in video synthesis, creating an auto-
regressive model. Despite its success, it inherits the common drawbacks of transformers: extensive training
resource consumption and prolonged inference time.

Latent space modeling. The Latent Video Transformer (LVT) (Rakhimov et al., 2020) introduces a
novel approach by modeling dynamics and predicting future features auto-regressively within a latent space,
reducing the computational burden. The NUWA framework (Wu et al., 2022a) proposes a versatile 3D
transformer encoder-decoder architecture adaptable to various data modalities and tasks, further showcasing
the potential of transformers in video synthesis. NUWA-Infinity (Liang et al., 2022) expands on this with
an innovative generation mechanism aimed at achieving infinite high-resolution video generation, reflecting
ongoing efforts to unify generative tasks across different modalities.

Sequential modeling and visual sentences. LVM (Bai et al., 2023) introduces sequential modeling to
enhance the learning capabilities of large-scale vision models, demonstrating the scalability and flexibility of
sequence models in in-context learning. The concept of "visual sentence" was proposed, where a sequence of
images with intrinsic relationships is arranged similarly to a sentence in the language, enabling the model
to leverage sequence information for sentence continuation and other visual tasks without relying on non-
pixel-level knowledge.

In-context learning in visual domain. In-context learning is not new to the visual domain.
Painter (Wang et al., 2023b) introduces a general framework for visual learning that enables images to
"speak" through in-context visual learning, enhancing both image generation and understanding. Seg-
GPT (Wang et al., 2023c) investigates using a GPT architecture for image segmentation, proposing the
concept of segmenting everything and demonstrating the possibility of achieving unified image segmentation
in an unsupervised learning environment, advancing generalization in visual segmentation tasks.

Advances in video generation. In the video generation domain, MAGVIT (Yu et al., 2023a) presents a
masked generative video Transformer that efficiently processes video by masking certain parts and generating
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missing segments. MAGVIT-v2 (Yu et al., 2023b) suggests that transformers might outperform diffusion
models in visual generation tasks, emphasizing the critical role of visual tokenizers. VideoPoet (Kondratyuk
et al., 2023) introduces a large language model for zero-shot video generation, pushing the boundaries of
unsupervised learning in video generation. It allows users to generate or modify videos based on high-level
textual prompts, excelling in capturing temporal and contextual relationships within video data.

Text-guided generative video synthesis algorithms create a sequence of frames by integrating context frames
and textual guidance. The Text-guided Video Completion (TVC) task involves completing videos based
on various conditions, including the first frame (video prediction task), the last frame (video rewind task),
or a combination of both (video transition task), guided by textual instructions. MMVG (Fu et al., 2023)
addresses the TVC task by utilizing auto-regressive encoder-decoder architectures, integrating text and frame
features, resulting in a unified framework capable of handling multiple video synthesis tasks.

These studies collectively integrate visual tokenizers and large language models to offer unified and scalable
frameworks for visual learning, driving breakthroughs in FFS tasks. The evolving landscape of FFS research
continues to showcase the potential of transformers and LLMs in unifying generative tasks across different
modalities.

Challenges. Token-based generation for FFS faces significant hurdles, including efficient visual tokenizer
to balance minimal tokens with near-lossless reconstruction, particularly for high-resolution content. The
computational resource demands of transformer-based models pose adoption barriers, especially in resource-
constrained settings. Because when the computing power budget is insufficient, we may not observe the
emergence phenomenon reported in previous studies under this paradigm (Bai et al., 2024). Recently, Sun
et al. (2024a) suggest that one reason token-based models cannot match the visual quality of diffusion models
is the lack of integration of high-quality community assets, such as training infrastructure and high-quality
data.

6 Application Realms

The applications of FFS span a wide range of domains, showcasing its significance in different fields.

World model. World models (Ha & Schmidhuber, 2018; Zhu et al., 2024) provide a more general frame-
work for simulating and predicting the behavior of complex systems. A world model is often used in rein-
forcement learning and robotics to enable agents to make informed decisions and take actions that lead to
desired outcomes. To construct a world model, FFS is an important learning objective (Hafner et al., 2020;
2023a; Wang et al., 2024a). Escontrela et al. (2024) show that video prediction can also serve as a part of
reward modeling to aid reinforcement learning.

Autonomous driving. FFS is indispensable for autonomous vehicles, including self-driving cars and
drones, as it allows them to anticipate the movement of objects, pedestrians, and other vehicles. This
capability is crucial for ensuring safe navigation. For instance, GAIA-1 (Hu et al., 2023a) leverages a unified
world model that integrates multi-modal large language models and diffusion processes to predict control
signals and future frames, enhancing the vehicle’s decision-making capabilities. Currently, how to effectively
utilize image information to aid trajectory prediction in real-world scenarios remains a challenge (Nayakanti
et al., 2023; Varadarajan et al., 2022).

Robot navigation. In robotics, FFS is employed to guide robots through dynamic environments. It
enables robots to plan their paths, move objects, and avoid obstacles effectively, as demonstrated by Finn &
Levine (2017). By predicting future states, robots can make proactive decisions, enhancing their adaptability
and efficiency in complex settings.

Cinema industry. FFS finds application in the cinema industry, particularly in special effects, animation,
and pre-visualization. It aids filmmakers in creating realistic scenes and enhancing the overall cinematic
experience. For example, Mahapatra & Kulkarni (2022) utilize FFS to generate visually compelling sequences
that contribute to the storytelling and artistic expression in films.
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Meteorological community. FFS plays a crucial role in weather forecasting, aiding meteorologists in
simulating and predicting atmospheric conditions. By accurately predicting future frames, FFS contributes
to improved accuracy in weather predictions, as exemplified by the work of Shi et al. (2017). This capability
is vital for weather forecasting services and disaster preparedness.

Anomaly detection. Liu et al. (2018) propose an approach to anomaly detection in videos by leveraging
future frame prediction, where normal events are expected to be predictable while abnormal ones are not.
The method introduces a motion constraint in addition to appearance constraints to ensure the predicted
future frames are consistent with the ground truth in both spatial and temporal aspects.

Overall, these diverse applications underscore the importance and potential of FFS as a tool for understanding
and interacting with the world around us. Its ability to predict future states from past observations makes
it a valuable asset in fields ranging from artificial intelligence to entertainment and beyond.

Challenges. When migrating the FFS methods to applications, potential issues that may be encountered.
For instance, in specific domains, we might need to explore solutions for few-shot learning (Gui et al., 2018) or
adaptation during inference (Choi et al., 2021). We also need to study how to reasonably integrate vectorized
data with image data. Moreover, in real-world tasks, people often prefer methods with good interpretability,
while most end-to-end FFS methods are not easily interpretable.

7 Related Work

Previous Surveys on Video Prediction. The field of video prediction and related topics, such as action
recognition and spatio-temporal predictive learning, has seen significant advancements in recent years, largely
driven by deep learning techniques. Several comprehensive surveys have provided an overview of the state-
of-the-art methods, datasets, and evaluation metrics in this domain. Zhou et al. (2020) introduce next-
frame prediction networks before 2020, categorizing them into sequence-to-one and sequence-to-sequence
architectures. The paper compares these approaches by analyzing network architecture and loss function
design, providing a quantitative performance comparison using off-the-shelf datasets and evaluation metrics.
Oprea et al. (2020) offer a review of deep learning methods for video prediction, defining the fundamentals and
background concepts, and analyzing existing models according to a proposed taxonomy. The survey includes
experimental results to facilitate the assessment of the state of the art on a quantitative basis. Rasouli
(2020b) provide an overview of vision-based prediction algorithms, focusing on deep learning approaches.
The paper categorizes these algorithms into video prediction, action prediction, trajectory prediction, body
motion prediction, and other prediction applications, discussing common architectures, training methods,
data types, evaluation metrics, and datasets. Kong & Fu (2022) survey the state-of-the-art techniques
in action recognition and prediction, discussing existing models, popular algorithms, technical difficulties,
action databases, evaluation protocols, and future directions. Tan et al. (2023) propose OpenSTL, a
comprehensive benchmark for spatio-temporal predictive learning, categorizing approaches into recurrent-
based and recurrent-free models. The paper conducts standard evaluations on various datasets and provides
an analysis of how model architecture and dataset properties affect performance.

Surveys on Video Diffusion Models. Xing et al. (2023b) present a comprehensive review of video
diffusion models in the AIGC era, categorizing the work into video generation, video editing, and other
video understanding tasks. The survey includes a thorough review of the literature in these areas and
discusses challenges and future trends. Li et al. (2024) present the survey of recent advancements in
long video generation, summarizing them into two key paradigms: divide and conquer, and temporal auto-
regressive. It also provides a comprehensive overview and classification of datasets and evaluation metrics,
discussing emerging challenges and future directions in this dynamic field. Sun et al. (2024b) review Sora,
OpenAI’s text-to-video model, categorizing literature into evolutionary generators, excellent pursuit, and
realistic panorama, while discussing datasets, metrics, challenges, and future research directions.
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Our Survey Focus. Our survey comprehensively reviews historical and contemporary works in FFS,
focusing on the transition from deterministic to generative synthesis methodologies. The survey highlights
significant advancements and shifts in approach, emphasizing the growing importance of generative models
in achieving realistic and diverse future frame predictions.

8 Conclusion

In this survey, we have discussed various aspects of FFS, covering key topics such as predominant datasets,
evolving algorithms and current challenges.

Based on the overall development trends in the field of artificial intelligence, we believe that the trajectory
of video synthesis research should diverge. On one hand, research should focus on the trend towards model
lightweighting suitable for high-definition video applications, targeting low-level objectives such as video
compression and short-term motion estimation. On the other hand, research should explore how models
can fundamentally understand the laws of the world and create content by harnessing substantial compu-
tational resources and diverse, long-duration video data. For the latter, future research should prioritize
the formulation of evaluation metrics that incentivize stochastic synthesis, thus expanding the potential of
simulation of the human world. The ultimate objective is to cultivate video synthesis models with a profound
comprehension of the inherent dynamics within videos. Such models could execute video generation over
extended time horizons with high stochastic complexity in the real world.

Our taxonomy is based on algorithm stochasticity, showcasing a significant shift from deterministic ap-
proaches toward generative methodologies. This survey emphasizes the importance of balancing pixel-level
accuracy with a deep understanding of complex scene dynamics in video synthesis. Additionally, we delve
into the intricacies of stochastic birth-and-death phenomena, advocating for enhanced evaluation metrics
and the utilization of substantial computational resources and large-scale video datasets. We also sort out
the different research directions under this topic and discuss the current challenges. These insights aim to
guide future research directions in video synthesis. As the field advances, we anticipate the development of
models that provide a more profound and nuanced grasp of nature in the real world. This evolution promises
to enhance accuracy, efficiency, and creativity, paving the way for novel applications and research.
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